AI/ML/GenAI Training Curriculum

Audience: Designed for data analysts, software engineers, AI practitioners, and technology professionals who want to gain end-to-end skills in AI, Machine Learning, and Generative AI — from foundational concepts to advanced, real-world applications.

Prerequisites: A basic understanding of programming (preferably in Python) and familiarity with data handling is recommended. However, the course begins with fundamentals, making it accessible to motivated beginners.

Course Overview: This 3-month hands-on training program takes you from AI/ML fundamentals to advanced Generative AI applications. You'll build a strong foundation in Probability, Statistics, Python, and Machine Learning, then progress to Deep Learning, NLP, and Large Language Models. The course includes practical projects, LLM customization, AI agent development, and a capstone project, equipping you with the skills to design, build, and deploy real-world AI solutions.

Class Timings: Saturday & Sunday for 2.5hrs – 3hrs

Module	Topics
Module 1	Probability & Statistics Fundamentals • Probability theory & common distributions • Descriptive & inferential statistics • Hypothesis testing & p-values • Confidence intervals & variability measures Learning Outcome: By the end of this module, participants will be able to apply probability and statistical methods to analyze and interpret datasets for AI/ML applications.
Module 2	 Python for AI/ML Python syntax & data structures Functions, loops, and conditionals Data handling with NumPy & Pandas Learning Outcome: By the end of this module, participants will be able to write clean Python code, manipulate data structures, and perform data handling using NumPy and Pandas.
Module 3	 Machine Learning Foundations & Data Preparation ML workflow (supervised vs unsupervised) Data preprocessing & wrangling Feature engineering & selection Handling missing data & outliers Learning Outcome: By the end of this module, participants will be able to prepare, clean, and transform raw data for effective use in machine learning models.
Module 4	 Supervised Learning Models Regression (linear, logistic, regularization) Classification models (SVM, Naïve Bayes, KNN) Decision trees & ensemble methods Model selection & evaluation Learning Outcome: By the end of this module, participants will be able to

AI/ML/GenAI Training Curriculum

	select, train, and evaluate supervised learning models for classification and regression problems.
Module 5	Unsupervised Learning Models
Module 3	• Clustering (K-means, hierarchical, DBSCAN)
	• Association rules (Apriori, FP-Growth)
	• Dimensionality reduction (PCA)
	• Applications in anomaly detection
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	apply clustering, association, and dimensionality reduction techniques to
35 3 3 5	uncover patterns in data.
Module 6	ML Pipelines & Model Optimization
	• Building ML pipelines (scikit-learn)
	Hyperparameter tuning (Grid/Random/Bayesian)
	Model evaluation metrics
	Workflow automation
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	build end-to-end ML pipelines, tune models, and automate workflows for
	efficient deployment.
Module 7	Deep Learning Fundamentals
	• Neural networks (ANN basics)
	• CNN, RNN architectures
	• LSTM & GRU concepts
	Applications in vision & sequence modeling
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	design, train, and evaluate deep learning models for vision and sequence-based
	applications.
Module 8	Natural Language Processing
	• Text preprocessing & feature extraction
	• Bag-of-Words, TF-IDF, embeddings
	• Transformer basics
	• Intro to Hugging Face models
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	process text data, extract features, and leverage transformer-based models for
	NLP tasks.
Module 9	Generative AI & LLM Foundations
	• Python for GenAI
	Generative AI concepts & LLM basics
	• Tokenization, embeddings, inference
	• Cloud & open-source LLMs
	Learning Outcome: By the end of this module, participants will be able to
	understand the architecture of LLMs, perform tokenization, and work with
	both cloud and open-source models.
Module 10	LLM Development Tools
	• LangChain & LangGraph
	• Vector databases (Pinecone, FAISS, Chroma)
	• Prompt engineering
	1 rompt engineering

AI/ML/GenAI Training Curriculum

	• Retrieval Augmented Generation (RAG)
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	design, build, and integrate LLM-based solutions using tools like LangChain,
	vector databases, and RAG pipelines.
Module 11	AI Agents & Customization
	Model monitoring & logging
	• AI agents with LangChain
	• Integrating RAG & agents in apps
	• Fine-tuning & implementing guardrails
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	develop AI agents, implement fine-tuning, and set up monitoring and
	guardrails for production systems.
Module 12	Capstone Project
	• End-to-end GenAI application
	• Integration of LLM, RAG, AI agents
	• Deployment & presentation
	• Incorporating latest GenAI trends
	• Understanding the MCP
	<u>Learning Outcome</u> : By the end of this module, participants will be able to
	deliver a fully functional GenAI application, integrating LLM, RAG, and AI
	agents, ready for deployment.